2021
[1] V. Cooray, G. Cooray, M. Rubinstein, and F. Rachidi, “Ionization Waves Enhance the Production of X-rays during Streamer Collisions,” Atmosphere, vol. 12, no. 9, p. 1101, 2021, doi: 10.3390/atmos12091101.
[2] A. Tatematsu, F. Rachidi, and M. Rubinstein, “Three-Dimensional FDTD-Based Simulation of Induced Surges in Secondary Circuits Owing to Primary-Circuit Surges in Substations,” IEEE Trans. Electromagn. Compat., vol. 63, no. 4, pp. 1078–1089, 2021, doi: 10.1109/TEMC.2021.3049144.
[3] A. Sunjerga, M. Rubinstein, F. Rachidi, and V. Cooray, “On the Initiation of Upward Negative Lightning by Nearby Lightning Activity: An Analytical Approach,” J. Geophys. Res. Atmospheres, vol. 126, no. 5, 2021, doi: 10.1029/2020JD034043.
[4] V. Cooray, M. Rubinstein, and F. Rachidi, “Modified Transmission Line Model with a Current Attenuation Function Derived from the Lightning Radiation Field—MTLD Model,” Atmosphere, vol. 12, no. 2, p. 249, 2021, doi: 10.3390/atmos12020249.
[5] A. Ragusa, H. Sasse, A. Duffy, F. Rachidi, and M. Rubinstein, “Electromagnetic Time Reversal Method to Locate Partial Discharges in Power Networks Using 1D TLM Modelling,” IEEE Lett. Electromagn. Compat. Pract. Appl., vol. 3, no. 1, pp. 24–28, 2021, doi: 10.1109/LEMCPA.2020.3032465.
[6] T. Produit et al., “The laser lightning rod project,” Eur. Phys. J. Appl. Phys., vol. 93, no. 1, p. 10504, 2021, doi: 10.1051/epjap/2020200243.
[7] H. Karami, M. Azadifar, M. Rubinstein, and F. Rachidi, “An experimental validation of partial discharge localization using electromagnetic time reversal,” Sci. Rep., vol. 11, no. 1, 2021, doi: 10.1038/s41598-020-80660-z.
2020
[8] Z. Wang, F. Rachidi, M. Paolone, M. Rubinstein, and R. Razzaghi, “A closed time-reversal cavity for electromagnetic waves in transmission line networks,” IEEE Trans. Antennas Propag., 2020.
[9] H. Karami, M. Azadifar, A. Mostajabi, M. Rubinstein, and F. Rachidi, “Localization of electromagnetic interference source using a time reversal cavity: Application of the maximum power criterion,” in 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 2020, pp. 598–602.
[10] V. Cooray, M. Rubinstein, and F. Rachidi, “Field-to-Transmission Line Coupling Models With Special Attention to the Cooray–Rubinstein Approximation,” IEEE Trans. Electromagn. Compat., 2020.
[11] M. Brignone et al., “Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current—Part I: Theory,” IEEE Trans. Electromagn. Compat., 2020.
[12] D. Mestriner et al., “Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current. Part II: Validation and Computational Performance,” IEEE Trans. Electromagn. Compat., 2020.
[13] Measurement and Modeling of Both Distant and Close Electric Fields of an M‐Component in Rocket‐Triggered Lightning, Q. Li; F. Rachidi; M. Rubinstein; J. Wang; L. Cai et al., Journal of Geophysical Research: Atmospheres. 2020. Vol. 125, num. 21. DOI : 10.1029/2019JD032300.
[14] Numerical and Experimental Validation of Electromagnetic Time Reversal for Geolocation of Lightning Strikes, H. Karami; M. Azadifar; A. Mostajabi; M. Rubinstein; F. Rachidi, IEEE Transactions on Electromagnetic Compatibility. 2020. Vol. 62, num. 5, p. 2156-2163. DOI : 10.1109/TEMC.2019.2957531.
[15] On the Propagation of Lightning-Radiated Electromagnetic Fields Across a Mountain, W. Hou; M. Azadifar; M. Rubinstein; F. Rachidi; Q. Zhang, IEEE Transactions on Electromagnetic Compatibility. 2020. Vol. 62, num. 5, p. 2137-2147. DOI : 10.1109/TEMC.2019.2947095.
[16] Locating Transient Directional Sources in Free Space Based on the Electromagnetic Time Reversal Technique, Q. Li; Y-Z. Xie; M-X. Gao; K-J. Li; S-Y. He et al., IEEE Transactions on Electromagnetic Compatibility. 2020. Vol. 62, num. 5, p. 2036-2044. DOI : 10.1109/TEMC.2020.2966872.
[17] Grounding Resistance of a Hemispheric Electrode Located on the Top of a Finite-Height, Cone-Shaped Mountain, A. Sunjerga; M. Rubinstein; D. Poljak; H. Karami; F. Rachidi-Haeri, IEEE Transactions on Electromagnetic Compatibility. 2020. Vol. 62, num. 5, p. 1889-1892. DOI : 10.1109/TEMC.2020.2974579.
[18] Partial Discharge Localization Using Time Reversal: Application to Power Transformers, H. Karami; M. Azadifar; A. Mostajabi; M. Rubinstein; H. Karami et al., Sensors. 2020. Vol. 20, num. 5, p. 1419. DOI : 10.3390/s20051419.
[19] LMA observations of upward lightning flashes at the Säntis Tower initiated by nearby lightning activity, A. Sunjerga; M. Rubinstein; N. Pineda; A. Mostajabi; M. Azadifar et al., Electric Power Systems Research. 2020. Vol. 181, p. 106067. DOI : 10.1016/j.epsr.2019.106067.
[20] On the Efficiency of OpenACC-aided GPU-Based FDTD Approach: Application to Lightning Electromagnetic Fields, S. Mohammadi; H. Karami; M. Azadifar; F. Rachidi, Applied Sciences. 2020. Vol. 10, num. 7. DOI : 10.3390/app10072359.
[21] Partial Discharge Localization Using Electromagnetic Time Reversal: A Performance Analysis, M. Azadifar; H. Karami; Z. Wang; M. Rubinstein; F. Rachidi et al., IEEE Access. 2020. Vol. 8, p. 147507-147515. DOI : 10.1109/ACCESS.2020.3015973.
[22] An Efficient FDTD Method to Calculate Lightning Electromagnetic Fields Over Irregular Terrain Adopting the Moving Computational Domain Technique, W. Hou; M. Azadifar; M. Rubinstein; Q. Zhang; F. Rachidi, IEEE Transactions on Electromagnetic Compatibility. 2020. Vol. 62, num. 3, p. 976-980. DOI : 10.1109/TEMC.2019.2917282.
[23] The Upper Bound of the Speed of Propagation of Waves along a Transmission Line, V. Cooray; G. Cooray; F. Rachidi; M. Rubinstein, Progress In Electromagnetics Research M. 2020. Vol. 93, p. 119-125.
[24] Latitude and Topographical Dependence of Lightning Return Stroke Peak Current in Natural and Tower-Initiated Negative Ground Flashes, V. Cooray; M. Rubinstein; F. Rachidi, Atmosphere. 2020. Vol. 11, num. 6, p. 560. DOI : 10.3390/atmos11060560.
[25] Modeling Compact Intracloud Discharge (CID) as a Streamer Burst, V. Cooray; G. Cooray; M. Rubinstein; F. Rachidi, Atmosphere. 2020-05-25. Vol. 11, num. 5, p. a.n. 549. DOI : 10.3390/atmos11050549.
[26] The Polarity Reversal of Lightning‐Generated Sky Wave, W. Hou; M. Azadifar; M. Rubinstein; F. Rachidi; Q. Zhang, Journal of Geophysical Research: Atmospheres. 2020. Vol. 125, num. 17, p. 1-17, e2020JD032448. DOI : 10.1029/2020JD032448.
[27] Characteristics of different charge transfer modes in upward flashes inferred from simultaneously measured currents and fields, Lixia He, Mohammad Azadifar , Quanxin Li , Marcos Rubinstein , Vladimir A. Rakov, Arturo Mediano, Davide Pavanello, Mario Paolone, Hongyan Xing and Farhad Rachidi, High Volt., vol. 5, no. 1, pp. 30–37, 2020, doi: 10.1049/hve.2019.0017.
[28] Q. Li et al., “On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields,” Electr. Power Syst. Res., vol. 178, p. 106047, 2020, doi: 10.1016/j.epsr.2019.106047.
2019
[29] J. Figueras i Ventura et al., “Analysis of the lightning production of convective cells,” Atmospheric Meas. Tech., vol. 12, no. 10, pp. 5573–5591, 2019, doi: 10.5194/amt-12-5573-2019.
[30] A. Mostajabi, D. L. Finney, M. Rubinstein, and F. Rachidi, “Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques,” Npj Clim. Atmospheric Sci., vol. 2, no. 1, 2019, doi: 10.1038/s41612-019-0098-0.
[31] A. Mostajabi, H. Karami, M. Azadifar, A. Ghasemi, M. Rubinstein, and F. Rachidi, “Single-Sensor Source Localization Using Electromagnetic Time Reversal and Deep Transfer Learning: Application to Lightning,” Nat. Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-53934-4.
[32] M. Azadifar, M. Rubinstein, Q. Li, F. Rachidi, and V. A. Rakov, “A New Engineering Model of Lightning M-Component that Reproduces Its Electric Field Waveforms at Both Close and Far Distances,” JGR, 2019.
[33] A. Sunjerga, F. Rachidi, M. Rubinstein, and D. Poljak, “Calculation of the Grounding Resistance of Structures Located on Elevated Terrain,” IEEE Trans. Electromagn. Compat., vol. 61, no. 6, pp. 1891–1895, 2019, doi: 10.1109/TEMC.2018.2877214.
[34] N. Pineda et al., “Meteorological Aspects of Self-Initiated Upward Lightning at the Santis Tower (Switzerland),” J. Geophys. Res.-Atmospheres, 2019, doi: 10.1029/2019JD030834.
[35] D. Li et al., “The Propagation Effects of Lightning Electromagnetic Fields Over Mountainous Terrain in the Earth-Ionosphere Waveguide,” J. Geophys. Res.-Atmospheres, vol. 124, pp. 14,198-14,219, 2019, doi: 10.1029/2018JD030014.
[36] J. Figueras i Ventura; N. Pineda; N. Besic; J. Grazioli; A. Hering et al., Analysis of the lightning production of convective cells,, Atmospheric Measurement Techniques. 2019. Vol. 12, num. 10, p. 5573-5591. DOI : 10.5194/amt-12-5573-2019.
[37] A. Šunjerga et al., “Tower and Path-Dependent Voltage Effects on the Measurement of Grounding Impedance for Lightning Studies,” IEEE Trans. Electromagn. Compat., pp. 1–10, 2019.
[38] A. Tatematsu; F. Rachidi; M. Rubinstein, On the representation of thin wires inside lossy dielectric materials for FDTD‐based LEMP simulations, IEEJ Transactions on Electrical and Electronic Engineering. 2019. Vol. 14, num. 9, p. 1314-1322. DOI : 10.1002/tee.22932.
[39] L. He; F. Rachidi; M. Azadifar; M. Rubinstein; V. A. Rakov et al. ,Electromagnetic Fields Associated With the M‐Component Mode of Charge Transfer, Journal of Geophysical Research: Atmospheres. 2019. Vol. 124, p. 6791–6809. DOI : 10.1029/2018JD029998.
[40] V. Cooray; G. Cooray; M. Rubinstein; F. Rachidi, Generalized Electric Field Equations of a Time-Varying Current Distribution Based on the Electromagnetic Fields of Moving and Accelerating Charges, Atmosphere. 2019. Vol. 10, num. 7. DOI : 10.3390/atmos10070367.
[41] Q. Li; J. Wang; F. Rachidi; M. Rubinstein; A. Sunjerga et al., Importance of Taking Into Account the Soil Stratification in Reproducing the Late-Time Features of Distant Fields Radiated by Lightning, IEEE Transactions on Electromagnetic Compatibility. 2019. Vol. 61, num. 3, p. 935-944. DOI : 10.1109/TEMC.2018.2840702.
[42] J. Guo; M. Rubinstein; V. Cooray; F. Rachidi, On the Modeling of Non-Vertical Risers in the Interaction of Electromagnetic Fields With Overhead Lines, IEEE Transactions on Electromagnetic Compatibility. 2019. Vol. 61, num. 3, p. 631-636. DOI : 10.1109/TEMC.2019.2903335.
[43] M. Azadifar; M. Rubinstein; F. Rachidi; V. A. Rakov; G. Diendorfer et al., A Study of a Large Bipolar Lightning Event Observed at the Säntis Tower, IEEE Transactions on Electromagnetic Compatibility. 2019. Vol. 61, num. 3, p. 796-806. DOI : 10.1109/TEMC.2019.2913220.
[44] J. Figueras i Ventura; N. Pineda; N. Besic; J. Grazioli; A. Hering et al., Polarimetric radar characteristics of lightning initiation and propagating channels, Atmospheric Measurement Techniques. 2019. Vol. 12, num. 5, p. 2881-2911. DOI : 10.5194/amt-12-2881-2019.
[45] A. Mostajabi; D. Li; M. Azadifar; F. Rachidi; M. Rubinstein et al., Analysis of a bipolar upward lightning flash based on simultaneous records of currents and 380-km distant electric fields, Electric Power Systems Research. 2019. Vol. 174, p. 105845. DOI : 10.1016/j.epsr.2019.04.023.
[46] A. Sunjerga; Q. Li; D. Poljak; M. Rubinstein; F. Rachidi, Isolated vs. Interconnected Wind Turbine Grounding Systems: Effect on the Harmonic Grounding Impedance, Ground Potential Rise and Step Voltage, Electric Power Systems Research. 2019. Vol. 173, p. 230-239. DOI : 10.1016/j.epsr.2019.04.010.
[47] A. Sunjerga; D. S. Gazzana; D. Poljak; H. Karami; K. Sheshyekani et al., Tower and Path-Dependent Voltage Effects on the Measurement of Grounding Impedance for Lightning Studies, IEEE Transactions on Electromagnetic Compatibility. 2019. Vol. 61, num. 2, p. 409-418. DOI : 10.1109/TEMC.2018.2819693.
[48] X. Chen; A. Smorgonskiy; J. Li; A. P. Vassilopoulos; M. Rubinstein et al., Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber composites, Journal of Materials Science. 2019. Vol. 54, num. 5, p. 3893-3903. DOI : 10.1007/s10853-018-3127-1.
2018
[49] N. Mora; G. Lugrin; M. Nyffeler; P. Bertholet; M. Rubinstein et al. : Corrections to “Study of the Propagation of Common Mode IEMI Signals Through Concrete Walls”; IEEE Transactions on Electromagnetic Compatibility. 2018. DOI : 10.1109/TEMC.2017.2778431.
[50] Wang, Z., S. He, Q. Li, B. Liu, R. Razzaghi, M. Paolone, Y. Xie, M. Rubinstein, and F. Rachidi. 2018. “A Full-Scale Experimental Validation of Electromagnetic Time Reversal Applied to Locate Disturbances in Overhead Power Distribution Lines.” IEEE Transactions on Electromagnetic Compatibility, 1–9. https://doi.org/10.1109/TEMC.2018.2793967.
[51] M. T. C. de Barros and M. Rubinstein, “Lightning research and protection technologies,” Electr. Power Syst. Res., vol. 159, p. 1, Jun. 2018.
[52] L. He, M. Azadifar, F. Rachidi, M. Rubinstein and V. A. Rakov. An Analysis of Current and Electric Field Pulses Associated With Upward Negative Lightning Flashes Initiated from the Säntis Tower, in Journal of Geophysical Research: Atmospheres, vol. 123, num. 8, p. 4045-4059, 2018.
[53] D. S. Gazzana, A. Smorgonskiy, N. Mora, A. Šunjerga and M. Rubinstein. An experimental field study of the grounding system response of tall wind turbines to impulse surges, in Electric Power Systems Research, vol. 160, p. 219-225, 2018.
[54] N. Mora, G. Lugrin, M. Nyffeler, P. Bertholet and M. Rubinstein et al. Study of the Propagation of Common Mode IEMI Signals Through Concrete Walls, in IEEE Transactions on Electromagnetic Compatibility, vol. 60, num. 2, p. 385- 393, 2018.
[55] A. Šunjerga; F. Sokolić; M. Rubinstein; F. Rachidi : Lorentz Force from a Current-Carrying Wire on a Charge in Motion under the Assumption of Neutrality in the Symmetrical Frame of Reference; Journal of Modern Physics. 2018. DOI : 10.4236/jmp.2018.914159.
2017
[56] D. Li, M. Rubinstein, F. Rachidi, G. Diendorfer and W. Schulz et al. Location Accuracy Evaluation of ToA-Based Lightning Location Systems Over Mountainous Terrain, in Journal of Geophysical Research: Atmospheres, vol. 122, 2017.
[57] F. Heidler, A. Piantini, M. Rubinstein, Special Issue “Lightning Effects on Power Systems and Human Beings” (SIPDA 2015), Electric Power Systems Research, Volume 153, December 2017, Pages 1-2, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2017.09.027.
[58] V. Cooray, F. Rachidi and M. Rubinstein. Formulation of the Field-to-Transmission Line Coupling Equations in Terms of Scalar and Vector Potentials, in IEEE Transactions on Electromagnetic Compatibility, vol. 59, num. 5, p. 1586-1591, 2017.
[59] M. Azadifar, D. Li, F. Rachidi, M. Rubinstein and G. Diendorfer et al. Analysis of lightning-ionosphere interaction using simultaneous records of source current and 380 km distant electric field, in Journal of Atmospheric and Solar-Terrestrial Physics, vol. 159, p. 48-56, 2017.
[60] A. Smorgonskiy, F. Rachidi, M. Rubinstein, N. V. Korovkin and A. P. Vassilopoulos. Are Standardized Lightning Current Waveforms Suitable for Aircraft and Wind Turbine Blades Made of Composite Materials?, in IEEE Transactions on Electromagnetic Compatibility, vol. 59, num. 4, p. 1320-1328, 2017.
[61] A. Tatematsu, F. Rachidi and M. Rubinstein. A Technique for Calculating Voltages Induced on Twisted-Wire Pairs Using the FDTD Method, in IEEE Transactions on Electromagnetic Compatibility, vol. 59, num. 1, p. 301-304, 2017.
2016
[62] M. Azadifar, F. Rachidi, M. Rubinstein, V. A. Rakov and M. Paolone et al. Bipolar Lightning Flashes Observed at the Säntis Tower: Do We Need to Modify the Traditional Classification?, in Journal of Geophysical Research: Atmospheres, vol. 121, 2016.
[63] H. Karami, F. Rachidi and M. Rubinsein. On Practical Implementation of Electromagnetic Models of Lightning Return-Strokes, in Atmosphere, vol. 7, num. 135, 2016.
[64] M. Azadifar, F. Rachidi, M. Rubinstein, V. A. Rakov and M. Paolone et al. Fast Initial Continuous Current Pulses vs Return Stroke Pulses in Tower-initiated Lightning, in Journal of Geophysical Research: Atmospheres, vol. 121, 2016
[65] M. Stojilović, M. Rubinstein and A. R. Djordjević, "Quasi-Impulse Response of Frequency-Periodic Microwave Networks," in IEEE Transactions on Electromagnetic Compatibility, vol. 58, no. 2, pp. 468-476, April 2016.
[66] D. Li, M. Azadifar, F. Rachidi, M. Rubinstein and M. Paolone et al. On Lightning Electromagnetic Field Propagation Along an Irregular Terrain, in IEEE Transactions on Electromagnetic Compatibility, vol. 58, num. 1, p. 161-171, 2016.
[67] M. Azadifar, F. Rachidi, M. Rubinstein, M. Paolone and G. Diendorfer et al. Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower, in Journal of Geophysical Research: Atmospheres, vol. 121, num. 2, p. 595-606, 2016.
[68] D. Li, M. Azadifar, F. Rachidi, M. Rubinstein and G. Diendorfer et al. Analysis of lightning electromagnetic field propagation in mountainous terrain and its effects on ToA-based lightning location systems, in Journal of Geophysical Research: Atmospheres, vol. 121, num. 2, p. 895-911, 2016.
2015
[69] F. Heidler, A. Piantini, M. Rubinstein, Special Issue “The Lightning Flash and Lightning Protection” (XII SIPDA 2013), Electric Power Systems Research, Volume 118, January 2015, Pages 1-2, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2014.08.018.
[70] G. Lugrin, S. V. Tkachenko, F. Rachidi, M. Rubinstein and R. Cherkaoui. High-Frequency Electromagnetic Coupling to Multiconductor Transmission Lines of Finite Length, in IEEE Transactions on Electromagnetic Compatibility, vol. 57, num. 6, p. 1714-1723, 2015.
[71] A. Smorgonskiy, A. Tajalli, F. Rachidi, M. Rubinstein and G. Diendorfer et al. An analysis of the initiation of upward flashes from tall towers with particular reference to Gaisberg and Säntis Towers, in Journal of Atmospheric and Solar-Terrestrial Physics, vol. 136, p. 46-51, 2015.
[72] G. Lugrin, N. Mora, F. Rachidi, M. Righero and M. Rubinstein. Protection contre les interférences électromagnétiques intentionnelles. Peut-on utiliser les techniques classiques de la CEM ?, in Bulletin Electrosuisse, vol. 6, p. 38-41, 2015.
[73] A. Smorgonskiy, E. Egüz, F. Rachidi, M. Rubinstein and V. Cooray. A model for the evaluation of the electric field associated with the lightning-triggering rocket wire and its corona, in Journal of Geophysical Research: Atmospheres, vol. 120, 2015.
[74] A. Tatematsu, F. Rachidi and M. Rubinstein. Analysis of Electromagnetic Fields Inside a Reinforced Concrete Building With Layered Reinforcing Bar due to Direct and Indirect Lightning Strikes Using the FDTD Method, in IEEE Transactions on Electromagnetic Compatibility, vol. 57, num. 3, p. 405-417, 2015.
2014
[75] N. Mora, F. Vega, G. Lugrin, F. Rachidi and M. Rubinstein. Study and Classification of Potential IEMI Sources, in System Design and Assessment Notes, Note 41, 2014.
[76] G. Lugrin, N. M. Parra, F. Rachidi, M. Rubinstein and G. Diendorfer. On the Location of Lightning Discharges Using Time Reversal of Electromagnetic Fields, in IEEE Transactions on Electromagnetic Compatibility, vol. 56, num. 1, p. 149-158, 2014.
[77] A. Mimouni, F. Rachidi and M. Rubinstein, M., Electromagnetic Fields of a Lightning Return Stroke in Presence of a Stratified Ground, IEEE Transactions on Electromagnetic Compatibility, vol. 56, num. 2, p. 413-418, April 2014, doi: 10.1109/TEMC.2013.2282995.
2013
[78] A. Shoory, M. Rubinstein, A. Rubinstein, C. Romero and N. Mora et al. Application of the Cascaded Transmission Line Theory of Paul and McKnight to the Evaluation of NEXT and FEXT in Twisted Wire Pair Bundles, IEEE Transactions on Electromagnetic Compatibility, vol. 55, num. 4, p. 648-656, 2013.
[79] C. Romero, F. Rachidi, M. Paolone and M. Rubinstein. Statistical Distributions of Lightning Currents Associated With Upward Negative Flashes Based on the Data Collected at the Säntis Tower in 2010 and 2011, in IEEE Transactions on Power Delivery, vol. 28, num. 3, p. 1804-1812, 2013.
[80] C. Romero, F. Rachidi, M. Rubinstein, M. Paolone and V. A. Rakov et al. Positive lightning flashes recorded on the Säntis tower from May 2010 to January 2012, in Journal of Geophysical Research: Atmospheres, vol. 118, num. 23, p. 12'879-12'892, 2013.
[81] A. Smorgonskiy, F. Rachidi, M. Rubinstein, G. Diendorfer and W. Schulz. On the proportion of upward flashes to lightning research towers, in Atmospheric Research, vol. 129-130, p. 110-116, 2013.
[82] G. Lugrin, N. Mora, S. Sliman, F. Rachidi and M. Rubinstein et al. La vulnérabilité des réseaux électriques en cas d’attaques électromagnétiques: Caractéristiques des sources d’interférences intentionnelles, in Bulletin Electrosuisse, vol. 5, 2013.
2012
[83] M. Rubinstein, J.-L. Bermudez, V. Rakov, F. Rachidi and A. Hussein. Compensation of the Instrumental Decay in Measured Lightning Electric Field Waveforms, in IEEE Transactions on Electromagnetic Compatibility, vol. 54, p. 685-688, 2012.
[84] N. Mora, F. Rachidi and M. Rubinstein. Application of the time reversal of electromagnetic fields to locate lightning discharges, in Atmospheric Research, vol. 117, p. 78-85, 2012.
[85] A. Mosaddeghi, A. Shoory, F. Rachidi, M. Rubinstein and G. Diendorfer et al. Lightning Return Strokes to Tall Towers: Ability of Engineering and Electromagnetic Models to Reproduce Nearby Electromagnetic Fields, in IEEE Transactions on Electromagnetic Compatibility, vol. 54, num. 4, p. 889-897, 2012.
[86] A. Shoory, F. Rachidi and M. Rubinstein. Correction to "Relativistic Doppler effect in an extending transmission line: Application to lightning", in Journal of Geophysical Research, vol. 117, num. D13104, 2012.
[87] C. Romero, A. Mediano, A. Rubinstein, F. Rachidi and M. Rubinstein et al. Measurement of Lightning Currents Using a Combination of Rogowski Coils and B-Dot Sensors, in Journal of Lightning Research, vol. 4, num. 1, p. 71-77, 2012.
[88] A. Shoory, F. Vega, P. Yutthagowith, F. Rachidi and M. Rubinstein et al. On the Mechanism of Current Pulse Propagation Along Conical Structures: Application to Tall Towers Struck by Lightning, in IEEE Transactions on Electromagnetic Compatibility, vol. 54, num. 2, p. 332-342, 2012.
[89] R. Romero, C. Alberto, M. Paolone, M. Rubinstein and F. Rachidi-Haeri et al. A system for the measurements of lightning currents at the Säntis Tower, in Electric Power Systems Research, vol. 82, num. 1, p. 34-43, 2012.
2011
[90] A. Shoory, A. Mimouni, F. Rachidi, V. Cooray and M. Rubinstein. On the accuracy of approximate techniques for the evaluation of lightning electromagnetic fields along a mixed propagation path, Radio Science, vol. 46, num. RS2001, 2011.
[91] A. Shoory, F. Rachidi, M. Rubinstein and R. Thottappillil. On the Measurement and Calculation of Horizontal Electric Fields From Lightning, in IEEE Transactions on Electromagnetic Compatibility, vol. 53, num. 3, p. 792-801, 2011.
[92] A. Mosaddeghi, F. Rachidi, M. Rubinstein, F. Napolitano and D. Pavanello et al. Radiated Fields From Lightning Strikes to Tall Structures: Effect of Upward-Connecting Leader and Reflections at the Return Stroke Wavefront, in Ieee Transactions On Electromagnetic Compatibility, vol. 53, p. 437-445, 2011.
[93] A. Shoory, F. Rachidi and M. Rubinstein. Relativistic Doppler effect in an extending transmission line: Application to lightning, in Journal of Geophysical Research, vol. 116, num. D13205, 2011.
2010
[94] P. Manoochehrnia, F. Rachidi, M. Rubinstein, W. Schulz and G. Diendorfer. Benford's Law and Its Application to Lightning Data, IEEE Transactions on Electromagnetic Compatibility, vol. 52, num. 4, p. 956-961, 2010.
[95] V. Shostak, W. Janischewskyj, F. Rachidi, S. A. Mosaddeghi and M. Rubinstein et al. Some Aspects on Lightning Protection of Wind Turbines, International Journal of Plasma Environmental Science & Technology, vol. 4, num. 1, p. 91, 2010.
[96] R. Romero, C. Alberto, A. Rubinstein, M. Paolone and F. Rachidi et al. Instrumentation of the Säntis Tower in Switzerland for lightning current measurements, International Journal of Plasma Environmental Science & Technology, vol. 4, num. 1, p. 79-85, 2010.
[97] S. A. Mosaddeghi, A. Shoory, F. Rachidi, M. Rubinstein and G. Diendorfer et al. Close-Range Electric Fields Associated with Lightning Strikes to the Austrian Gaisberg Tower, International Journal of Plasma Environmental Science & Technology, vol. 4, num. 1, p. 89-90, 2010.
2009
[98] A. Shoory, F. Rachidi, M. Rubinstein, R. Moini, and S. Sadeghi, “Analytical Expressions for Zero-Crossing Times in Lightning Return-Stroke Engineering Models,” IEEE Transactions on Electromagnetic Compatibility, vol. 51, no. 4, pp. 963-974, 2009.
[99] A. Mosaddeghi, D. Pavanello, F. Rachidi, M. Rubinstein, and P. Zweiacker, “Effect of Nearby Buildings on Electromagnetic Fields from Lightning,” Journal of Lightning Research, vol. 1, pp. 52-60, 2009.
[100] A. Shoory, F. Rachidi, M. Rubinstein, R. Moini, and S. Sadeghi, “Why do some lightning return stroke models not reproduce the far-field zero crossing?,” Journal of Geophysical Research, vol. 114, no. D16204, 2009.
[101] D. Pavanello, F. Rachidi, W. Janischewskyj, M. Rubinstein, V. Shostak, C. A. Nucci, K. L. Cummins, A. M. Hussein, and J. S. Chang, “On the Current Peak Estimates Provided by Lightning Detection Networks for Lightning Return Strokes to Tall Towers,” IEEE Transactions on Electromagnetic Compatibility, vol. 51, no. 3, pp. 453-458, 2009.
2008
[102] F. Rachidi, M. Rubinstein, J. Montanya, J.L. Bermudez, R. Rodriguez, G. Sola, N. Korovkin, “A Review of Current Issues in Lightning Protection of New Generation Wind Turbine Blades”, IEEE Transactions on Industrial Electronics, Vol. 55, No 6, pp. 2489-2496, June 2008.
2007
[103] A. Mosaddeghi, D. Pavanello, F. Rachidi, M. Rubinstein, “On the Inversion of Polarity of the Electric Field at Very Close Range from a Tower Struck by Lightning”, Journal of Geophysical Research, 112, D19113, doi:10.1029/2006JD008350, 2007.
[104] D. Pavanello, F. Rachidi, M. Rubinstein, J.L. Bermudez, W. Janischewskyj, V. Shostak, C.A. Nucci, A.M. Hussein, J.S. Chang, “On Return-Stroke Currents and Remote Electromagnetic Fields Associated with Lightning Strikes to Tall Structures. Part I: Computational Models”, Journal of Geophysical Research, 112, D13101, doi:10.1029/2006JD007958, 2007.
[105] D. Pavanello, F. Rachidi, W. Janischewskyj, M. Rubinstein, A.M. Hussein, E. Petrache, V. Shostak, I. Boev, C.A. Nucci, W.A. Chisholm, M. Nyffeler, J.S. Chang, A. Jaquier, “On Return-Stroke Currents and Remote Electromagnetic Fields Associated with Lightning Strikes to Tall Structures. Part II: Experiment and Model Validation”, Journal of Geophysical Research, 112, D13122, doi:10.1029/2006JD007959, 2007.
[106] C.A. Nucci, F. Rachidi, M. Rubinstein, “An Overview of Field-to-Transmission Line Interaction”, Applied Computational Electromagnetics Society Newsletter, Vol. 22, No. 1, pp. 9-27, March 2007.
[107] J.L. Bermudez, F. Rachidi, W. Janischewskyj, V. Shostak, M. Rubinstein, D. Pavanello, A.M. Hussein, J.S. Chang, M. Paolone, “Determination of Lightning Currents from Far Electromagnetic Fields: Effect of a Strike Object”, Journal of Electrostatics, doi:10.1016/j.elstat.2006.09.007, Vol. 65, pp. 289-295, May 2007.
2006
[108] J. L. Bermudez, E. Marthe, F. Rachidi, M. Rubinstein and A. Vukicevic. La compatibilité électromagnétique de la technologie CPL, Bulletin SEV/AES 19/06, 2006.
[109] A. Vukicevic, F. Rachidi, M. Rubinstein, S. Tkachenko, “On the Evaluation of Antenna-Mode Currents along Transmission Lines”, IEEE Transactions on Electromagnetic Compatibility, Vol 48, No. 4, pp. 693-700,, November 2006.
[110] A. Rubinstein, M. Rubinstein, F. Rachidi “A Physical Interpretation of the Equal Area Rule”, IEEE Transactions on Electromagnetic Compatibility, vol. 48, No. 2, may 2006.
2005
[111] A. Rubinstein, F. Rachidi and M. Rubinstein, “On Wire-Grid Representation of Solid Metallic Surfaces”, IEEE Trans. on EMC, Volume 47, no 1, p. 192-195, 2005.
[112] J.L. Bermudez, F. Rachidi, M. Rubinstein, W. Janischewskyj, V. O. Shostak, D. Pavenello, J. S. Chang, A. M. Hussein, C. A. Nucci, and M. Paolone, “Far-Field-Current Relationship Base on the IL Model for Lightning Return Strokes to Elevated Strike Objects”, IEEE Trans. on EMC, Volume 47, no 1, p. 160-170, 2005.
2004
[113] F. Rachidi, J. L. Bermudez, M. Rubinstein, and V. A. Rakov “On the estimation of lightning peak currents from measured fields using lightning location systems” Journal of Electrostatics, Volume 60, Issues 2-4, Pages 121-129, March 2004.
[114] D. Pavanello, F. Rachidi, M. Rubinstein, J.L. Bermudez, C.A. Nucci “Electromagnetic field radiated by lightning to tall towers : Treatment of the discontinuity at the return stroke wave front”, Journal of Geophysical Research vol. 109, 2004.
2003
[115] A. Rubinstein, F. Rachidi, M. Rubinstein, B. Reusser “A Parallel Implementation of NEC for the Analysis of Large Structures” IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 2, 2003.
[116] J. L. Bermudez, F. Rachidi, W. Janischewskyj, V. Shostak, M. Rubinstein, D. Pavanello, A. M. Hussein, J. S. Chang, C. A. Nucci, and M. Paolone “Far Field - Current Relationship for Lightning Return Strokes to Elevated Strike Objects”IEEE Transactions of EMC, 2003.
[117] J. L. Bermudez, M. Rubinstein, F. Rachidi, F. Heidler and M. Paolone. Determination of reflection coefficients at the top and bottom of elevated strike objects struck by lightning, in Journal of Geophysical Research, vol. 108, num. D14, 2003.
2001
[118] M. Rubinstein, SEV Bulletin, Compatibilité électromagnetique et effets biologiques, Bulletin SEV, No. 17, August 2001.
2000
[119] M. Rubinstein, EMC in the Networked World, ComTec, November, 2000.
1998
[120] S. Guerrieri, C. A. Nucci, F. Rachidi, and M. Rubinstein, “On the influence of elevated strike objects on directly measured and indirectly estimated lightning currents,” IEEE Transactions on Power Delivery, vol. 13, pp. 1543-1551, 1998.
[121] E. Montandon and M. Rubinstein, “Some observations on the protection of buildings against the induced effects of lightning,” IEEE Transactions on Electromagnetic Compatibility, vol. 40, pp. 505-12, 1998.
1997
[122] F. Rachidi, M. Rubinstein, S. Guerrieri, and C. A. Nucci, “Voltages induced on overhead lines by dart leaders and subsequent return strokes in natural and rocket-triggered lightning,” IEEE Transactions on Electromagnetic Compatibility, vol. 39, pp. 160-6, 1997.
1996
[123] M. Rubinstein, “An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate, and long range,” IEEE Transactions on Electromagnetic Compatibility, vol. 38, pp. 531-5, 1996.
1995
[124] C. Nucci, M. Ianoz, F. Rachidi, M. Rubinstein, F. Tesche, M. Uman, and C. Mazzetti “Modeling of Lightning-Induced Voltages on Overhead Lines: Recent Developments,” Electrotechnik und Informationstechnik, 112, 290-296, 1995.
[125] M. Rubinstein, F. Rachidi, M. A. Uman, R. Thottappillil, V. A. Rakov, and C. A. Nucci, “Characterization of vertical electric fields 500 m and 30 m from triggered lightning”, J. of Geophys. Res., 1995.
1994
[126] M. Rubinstein, M. A. Uman, P. J. Medelius, and E. M. Thomson, “Measurements of the Voltage Induced on an Overhead Power Line 20 m from Triggered Lightning”, IEEE EMC Trans., 36, 134-140, May, 1994.
1992
[127] N. Georgiadis, M. Rubinstein, M. A. Uman, P. J. Medelius, and E. M. Thomson, “Lightning-induced voltages at both ends of a 450-m distribution line”, IEEE Trans. EMC, December, 1992.
1991
[128] M. Rubinstein and M. A. Uman, “Transient Electric and Magnetic Fields Associated with Establishing a Finite Electrostatic Dipole, Revisited”, IEEE EMC Trans., 33, 312-32O, November, 1991.
1990
[129] M. Rubinstein and M. A. Uman, “On the Radiation Field Turn-on Term Associated with Traveling Current Discontinuities in Lightning,” J. Geophys. Res., 95, 3711-3713, 1990.
1989
[130] M. Rubinstein and M. A. Uman, “Methods for Calculating the Electromagnetic Fields from a Known Source Distribution: Application to Lightning,” IEEE Trans. EMC, 31, 1989.
[131] M. Rubinstein, A. Y. Tzeng, M. A. Uman, P. J. Medelius, and E. M. Thomson, “An Experimental Test of a Theory of Lightning-Induced Voltages on an Overhead Wire,” IEEE Trans. EMC, 31, 1989.
1988
[132] E. M. Thomson, P. J. Medelius, M. Rubinstein, M. A. Uman, J. Johnson, and J. W. Stone, Horizontal Electric Fields from Lightning Return Strokes, “J. Geophys. Res., 93, No. D3, March 1988.
[133] M.A. Uman, E.M. Thomson, J.W. Stone, P. Medelius, and M. Rubinstein, “Voltages Induced by Lightning on Electric Power Distribution Lines: Field Data and Analysis Results for the Period July 1984-1986,” ONRL/Sub/84-89650/1, Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.
1984
[134] E.M. Thomson, P. Medelius, M.A. Uman, M. Rubinstein, J. Johnson. “Horizontal Electric Fields of Lightning,” Trans. Am. Geophys. Union, 65, 842, 1984.